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EXPLICIT VON NEUMANN STABILITY CONDITIONS FOR
THE c-1 SCHEME—A BASIC SCHEME IN THE DEVELOPMENT
OF THE CE-SE COURANT NUMBER INSENSITIVE SCHEMES

Sin-Chung Chang
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

As part of the continuous development of the space-time conservation element and solution element
(CE-SE) method, recently a set of so called “Courant number insensitive schemes” has been proposed. The
key advantage of these new schemes is that the numerical dissipation associated with them generally does
not increase as the Courant number decreases. As such, they can be applied to problems with large Courant
number disparities (such as what commonly occurs in Navier-Stokes problems) without incurring excessive
numerical dissipation.

A basic scheme in the development of the Courant number insensitive schemes is the so called “c-t

scheme”. It is a solver of the PDE
ou ou

huted 20
ot + e
where a # 0 is a constant. At each space-time staggered mesh points (j,n), the ¢-7 scheme is formed by
1 n—1/2 n—1/2 n—1/2 n—1/2
uf = 3 {(1 + V)uj71/2 +(1- V)ujﬂ//2 + (1 -3 (ugfc)jil//2 — (U;z)jﬂ//Q}}
and 1
. n—1/2 n—1/2 n—1/2 n—1/2
(ua)j = 21+7) {ui+1/2 (2w =) (Ua) ) — gy — (120 - T)(uf)y‘fl/?}

Here: (i) u? and (uz)?}, respectively, denote the numerical analogues of u and (ax/4)0u/0z at the mesh
point (j,n); (ii) v def aat/Ax is the Courant number; and (iii) 7 is an adjustable parameter # —1.

Because the c-7 scheme is formed by two rather complicated equations involving two parameters v and
T, it were not expected that its von Neumann stability conditions could be cast into an explicit analytical
form. Against this expectation, it will be shown rigorously in this paper that, based on the von Neumann
analysis, the c-7 scheme is stable if and only if

<1, 1> TO(VQ), and (1/2,7) #(1,1)

where
0 if =0
4—2-2/20 -z a2
To(z) 4 - m( T2 i g<a<3/ll
—1+VI-2 2
rolT 5 TEST ¢ 3i<a<i
x

Note that the current stability conditions are in complete agreement with those generated numerically and
reported earlier.

In addition, it will be shown that: (i) 7,(z) is continuous at z = 0; (ii) 7,(x) is consistently defined at
x = 3/11; (iii)
lim 7/(z) = 111£1+T;(x) =121/90

3~ =
T— 37 T— 37

where 7/ (z) def dro(z)/dx; (iv) To(x) is strictly montonically increasing in the interval 0 < x < 1; and (v)

r < 7(7) < Vx, 0<z<l1
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1. Introduction

As part of the continuous development of the space-time conservation element and
solution element (CE-SE) method [1-11], recently a set of so called “Courant number
insensitive schemes” has been reported in [9-11]. The key advantage of these new schemes
is that the numerical dissipation associated with them generally does not increase as the
Courant number decreases. As such, they can be applied to problems with large Courant
number disparities (such as what commonly occurs in Navier-Stokes problems) without
incurring excessive numerical dissipation.

A basic scheme in the development of the Courant number insensitive schemes is the
so called “c-1 scheme” [11]. It is a solver of the PDE

ou ou

where a # 0 is a constant. Consider Fig. 1 and let {2 denote the set of all space-time
staggered mesh points (dots in Fig. 1), where n = 0,+1/2, £1,4+3/2,£2,.. ., and, for each
n,j=n=+1/2,n+t3/2,n+t5/2,.... Then, at each (j,n) € €, the ¢-7 scheme is formed by

n 1 n—1/2 n—1/2 2 n—1/2 n—1/2
uj =5 {(1 F)uy gy + (L= vug gy + (1 =v7) [(uz); )5 — (uf)j+1/2} } (1.2)

and

n 1 n—1/2 n—1/2 n—1/2 n—1/2
(uz)} = 72(1 1) [uj+1/2 —(1+2v - T)(uf>j+1/2 U1y T (1—2v— T)(uf)j—1/2}
(1.3)

Here: (i) u} and (uz)?, respectively, denote the numerical analogues of u and (az/4)0u/0x
at the mesh point (j,n); (ii)
et aal (1.4)
AZ
is the Courant number; and (iii) 7 is an adjustable parameter # —1. It is shown in [12]
that Egs. (1.2) and (1.3) are consistent with a pair of PDEs with Eq. (1.1) being one of
them.

Because the c-7 scheme is formed by two rather complicated equations involving two
parameters v and 7, it was not expected that its von Neumann stability conditions could
be cast into an explicit analytical form. But to the contrary, it will be shown rigorously in
this paper that, based on the von Neumann analysis, the c-7 scheme is stable if and only

if

¥ <1, 7>1,%), and (V3 7)#(1,1) (1.5)
where
(0 if =0
4—x—-2/2Q2—-2—22) .
o(z) & . if 0<z<3/11 (1.6)
—14+v1-2 52
ro o 5 TEOT i 3l<a<t
\ T
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Note that the current stability conditions are in complete agreement with those generated
numerically and reported earlier in [11].

In addition, it will be shown that: (i) 7,(z) is continuous at = = 0; (ii) 7,(x) is
consistently defined at x = 3/11; (iii)

lim 7/(z) = limJr 7! (z) =121/90 (1.7)
i z— T

T—
where 7/ (x) o dro(x)/dx; (iv) 7o(x) is strictly monotonically increasing in the interval
0<z<1;and (v)

T < To(z) < V7, 0<z<l1 (1.8)

Egs. (1.5) and (1.8) coupled with the facts that 7,(0) = 0 and V2 = |v| imply that
the c-7 scheme is stable if
r=<1 (1.9)

On the other hand, Egs. (1.5) and (1.8) imply that the c-7 scheme is unstable for the cases
(i)
v > 1 (1.10)
and (ii)
r=v? and 0<1*<1 (1.11)
Note that, for a reason explained in [9,11], the special ¢-7 scheme with Eq. (1.9) is a
Courant number insensitive solver for Eq. (1.1).

The rest of the paper is outlined as follows. For any pair of v and 7, and any phase
angle 0, the amplification matrix Q(v, 7, 0) that arises from the von Neumann stability
analysis is presented in Sec. 2 (see Eq. (2.8)). The definition of stability (Definition 1)
is then given in the same section in terms of the behaviors of [Q(v, T,0)]™, —m < 0 < T,
as the integer m — +oo. In Sec. 3, Theorems 1 and 2 are introduced to link stability
with the spectal radii p(Q(v, 1,6)) of Q(v,7,0), —7 < § < 7. Based on the preliminaries
given in Secs. 2 and 3, the main results are given in Sec. 4. Specifically, Sec. 4 begins
with Theorem 3, in which the necessary and sufficient stability conditions are expressed
implicitly in terms of a requirement on p(Q(v,7,0)), —m < 0 < 7w. It is then followed
by a systematic and rigorous effort to obtain the explicit solution to the above implicit
conditions. Finally, conclusions and discussions are presented in Sec. 5. Moreover, to give
the reader extra confidence on the main results established analytically in Theorems 34 and
35, these theorems are further validated numerically in Appendices A and B, respectively.
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2. von Neumann Stability Analysis

For any (j,n) € , let

def s
q(j,n) = (2.1)
(uz)?
. 1+v 1—v?
def
Q+(v, 1) = 9 -1 1—-2v—1 (2.2)
1+7 1+7
and
. 1—v  —(1-v?)
def
Q-(v,7) = ) 1 142 —171 (2.3)
1+7 1+7
where
1+7#0 (2.4)
is assumed. Then Eqgs. (1.2) and (1.3) can be expreseed as
q(,n)=Q+d(j—1/2,n=1/2)+Q-4(j +1/2,n—1/2) (2.5)

Hereafter Q4 (v, 7) and Q_ (v, 7) may be abbreviated as @+ and Q) _, respectively.
To study the stability of the ¢-7 scheme using the von Neumann analysis [1], for all
(4,m) € Q, let
q(j,n) = q*(n,0)e? (2.6)

Here (i) i & =1, (ii) 6, —0o < 0 < +oo, is the phase angle variation per Az, and (iii)
q*(n,0) is a 2 x 1 column matrix. Substituting Eq. (2.6) into Eq. (2.5) and using Eq. (2.4),
one has

7" (n+1/2,0) =Q(v,1,0)7" (n,0) (2.7)

where n =0,+1/2,+1,+3/2,..., and

Qr,7,0) € = 12Q (v,7) + ¢/2Q_(v,7)

cos(0/2) —ivsin(0/2) —i(1 — v?)sin(6/2) (2.8)
= isin(6/2) _[(1=7)cos(8/2) + 2ivsin(d/2)
1+7 I+7

Because of Eq. (2.7), Q(v, 7,0) is referred to as the amplification matrix of the ¢-7 scheme
per marching step (or per at/2). Also, by using Eq. (2.7), one has

¢ (n+m/2,0) = [Qv,7,0)]"¢" (n,0) (2.9)
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where m =1,2,3,...and n = 0, £1/2, £1, £3/2, .. .
As a result of Eq. (2.9), we have Definition 1.

Definition 1. The c-7 scheme is said to be stable with respect to a given ordered pair
(v, 1) if, for every 0, —oco < 6 < 400, all elements of the matrix [Q(v, T, 8)]™ associated
with this pair remain bounded as the positive integer m — +o00. On the other hand, the
scheme is said to be unstable with respect to a given (v, 7) if, for any 6, —oo < 6 < +o0, at
least one element of the matrix [Q(v, T, #)]™ associated with this (v, 7) becomes unbounded
as m — +oo. Hereafter, a given (v, T) is said to be c-7 stable (unstable) if the c-T scheme
is stable (unstable) with respect to this (v, 7).

Note that: (i) Eq. (2.8) implies that, for any integer ¢,
Qv, 7,0 +2m) = (-1)°Q(v, 7,0) (2.10)

and (ii) for any 0, —oo < 6 < +o0, there are a 6/, —7 < ¢’ < 7 and an integer ¢ such
that 0 = 0’ + 2¢w. As such, Definitions 1 is equivalent to the simplified form in which the
original range of 6, i.e., —0o < 6 < 400, is replaced by

—T<0<T (2.11)

Hereafter, the simplified form of Definition 1 is assumed.

Given Definition 1, it will be shown in this paper that a given (v, 7) is ¢-7 stable if and
only if it satisfies Eq. (1.5). As a first step, in Sec. 3 we will answer the following question:
For any given ordered set (v, ,0), what are the requirements the matrix Q(v, 7, ) must
meet so that all elements of the matrix [Q(v, 7, 0)]™ will remain bounded as m — +00?

NASA/TM—2005-213627 6



3. Two Matrix Theorems

Let M be any N x N matrix with real or complex elements. By definition, the
eigenspace of M is the vector space spanned by its eigenvectors. Let the dimension of this
eigenspace be denoted by N’. Then 1 < N’ < N. The matrix is said to be (i) nondefective
if N' = N and (ii) defective if N’ < N [13].

Hereafter let N = 2. Then the eigenvalues A\; and Ay of the matrix M are the two
roots of a quadratic characteristic equation. Moreover, we have Theorem 1.

Theorem 1. The matrix M is defective if and only if (i) Ay = Ao, and (ii) M # A1,
where [ is the 2 x 2 identity matrix and A. is the common value of \; and A,.

Proof. Let 51 and 52 be two nonnull 2 x 1 column matrices with
Mby = \by,  £=1,2 (3.1)

Then, for each /, Z;g is an eigenvector of M with the eigenvalue A;. In case that A\ # Ao, it
is known that by and by are linearly independent [13]. Thus N’ = 2 and M is nondefective.

Next let Ay = Ay and M be nondefective. Then N’ = 2, i.e., there exist two linearly
independent 2 x 1 column matrices by and by that satisfy Eq. (3.1). Let

. bis
b = L 0=1,2 (3.2)
bae
and
bll b12
Y (3.3)
b21 b22

Then, because A\; = Az, Eq. (3.1) can be expressed as
(M —-XI)B=0 (3.4)

where ). is the common value of A1 and A\y. Because 51 and 52 are linearly independent, B
is nonsingular [13]. Thus, B~!, the inverse of B, must exist. Multiplying the expressions on
the two sides of Eq. (3.4) from the right with B~! leads to the conclusion that M —\.I = 0,
ie., M = \I.

Conversely let M = A.I where A, is any scalar. Then it can be shown easily that
(i) A1 = A2 = A, and (ii) any 2 x 1 nonnull column matrix is an eigenvector of M. The
conclusion (ii) implies that N’ = 2 and thus M is nondefective.

It has been shown that: (i) M is nondefective if A\; # Ay; and (ii) in case that A\; = Ao,
M is nondefective if and only if M = A.I (i.e., M is defective if and only if M # A.I)
where \. is the common value of A1 and A5. Thus the proof is completed. QED.

NASA/TM—2005-213627 7



Next let (i) m be an integer > 0; and (ii) p(M) be the spectral radius of M, i.e.,

p(M) = max{| A, [Az]} (3.5)

Then we have Theorem 2.

Theorem 2. Every element of M™ will remain bounded as m — +oc if and only if

<1 if M is nondefective
p(M) { (3.6)

<1 if M is defective

Proof. According to the Jordan canonical form theorem [13], there exists a nonsin-
gular 2 x 2 matrix S such that

M = SAS™! (3.7)
Here (i) S™! is the inverse of S; (ii)
. A 0
AY if M is nondefective (3.8)
0 Ao
and (iii)
Ae 1
AY if M is defective (3.9)
0 A

Note that A in Eq. (3.9) is the common value of A\; and Ay in the defective case.
By using Eqgs. (3.8) and (3.9), one has: (i)

AP0
AT = if M is nondefective (3.10)
0 AR
and (ii) 1
AT mAT
AT = if M is defective (3.11)
0 AT

Because (i) Eq. (3.7) implies that
M™ = SA™S™1 (3.12)
and (ii) Eq. (3.12) is equivalent to

A" =STtM™S (3.13)

NASA/TM—2005-213627 8



one can infer from Eq. (3.10) that, for the nondefective case, every element of M™ will
remain bounded as m — +oo if and only if

p(M) <1 (the nondefective case) (3.14)
On the other hand, for the defective case, by using (i) p(M) = |A.|, and (ii)

0 if [\ <1
lim |mA" | = (3.15)
mee too if A >1

Egs. (3.11)—(3.13) imply that, for the defective case, every element of M™ will remain
bounded as M — 4o0 if and only if

p(M) <1 (the defective case) (3.16)

Because Eq. (3.6) is the combined form of Egs. (3.14) and (3.16), the proof is completed.
QED.

At this juncture, note that the term |[mA”~!| grows linearly with m as m — +oo if
|Ac| = 1. Thus, for the defective case with |A.| = 1, the growth rate of the magnitude of
any element of M™ as m — +oo is very low compared with the exponential growth rate
associated with a nondefective or defective case with p(M) > 1. The implication of this
observation will be addressed later.

NASA/TM—2005-213627 9



4. Main Results

An immediate result of Definition 1 and Theorem 2 is Theorem 3.
Theorem 3. A given (v, 7) is ¢-7 stable if and only if the condition

<1 if Q(v,7,0) is nondefective
p(Q(v,T,0)) (4.1)

<1 if Q(v,7,0) is defective
associated with the given (v, 7) is met for all , —7 < 0 < 7.
Two immediate results of Theorem 3 are Theorems 4 and 5.

Theorem 4. A necessary condition for any given (v, 7) to be c-7 stable is

p(Qv,7,0)) <1, —T<0<m (4.2)

Theorem 5. In case that

p(Qv,7,0)) # 1 (4.3)

for all defective Q(v,7,0) (—m < 6 < ) associated with a given (v,7), Eq. (4.2) is also a
sufficient condition for this (v, 7) to be c¢-7 stable.

From Theorem 3, it becomes clear that a thorough stability study of the c-7 scheme
requires a systematic investigation of the matrix Q(v,7,0) and its eigenvalues over the
entire range of v, 7, and 6. In the following, first we shall try to narrow down the possible
(v, 7) that are c-7 stable by ruling out those that fail to satisfy Eq. (4.2).

Let det(M) denote the determinant of any square matrix M. Then any eigenvalue A
of Q(v, 1, 0) satisfies the characteristic equation det (Q(v, 7,0) — A\I) =0, i.e.,

(14 7)A\? — [27 cos(0/2) — iv(3 + 7) sin(6/2)] A

2 2 .2 . . (44)
— (1 —7)cos*(0/2) — (1 +v*)sin*(0/2) —iv(1 + 7) sin(6/2) cos(6/2) = 0
Let
X(v,7,0) & 4cos(0/2) + [4(1 +7) — v2(7% + 27 + 5)] sin?(0/2) (4.5)
and
Y (v, 7,0) < 40(1 — 7)sin(6/2) cos(6/2) (4.6)

Then, with the aid of Eq. (2.4), Eq. (4.4) implies that A = A; (v, 7,60) or A = A_(v, 7,6)
where

Ae (v, ) e 27€08(0/2) —iv (3 + 7)sin(0/2) £ VX + iV
R 2(1+71) ’

1+7#0 (4.7)

NASA/TM—2005-213627 10



Hereafter X (v,7,0) and Y (v, 7,6) may be abbreviated as X and Y, respectively. Because
the range of the phase angle ¢ in the polar form of the principal square root v/ X + Y is
—m/2 < ¢ < 7/2, it can be shown that

VX +iY = % [\/\/X2+Y2—|—X—|—isign(Y)\/ X2+4+Y2-X (4.8)

where

def

sign(Y) =

1 itY >0
{ (49

-1 ifY <0
With the aid of Eq. (4.8), Eq. (4.7) implies that

1

At (v, 7,0) = m{QTCOS(@/Q) + %\/\/X2 +Y2+ X

(1+7#0)  (4.10)

—1 1/(3+T)sin(9/2)$%sign(Y)\/ X2+Y2—X}}

Next Eq (4.10) is used to yield
2014+ 7)2(AL)> + A% = 472 cos?(0/2) + v*(3 + 7)%sin?(0/2) + VX2 + Y2 (4.11)

and

(1+7)AALPIA_ 2 = (1 —7)%cos*(8/2) + (1 + v?)?sin*(0/2)

_ (4.12)
+ (2 — 27 + 3% + 720%) sin?(6/2) cos?(6/2)

For simplicity, hereafter A\, (v, 7,0) and A_(v,7,0) may be abbreviated as Ay and A_,
respectively. Next, let

s sin?(6/2), —T<0<m (4.13)

Then
cos?(0/2) =1—s (4.14)

and, corresponding to the domain —7 < 6 < 7, the range of s is
0<s<1 (4.15)
Next, let

D(v,T,s) def 21 = v?) (12 = v?)s* + [A7 + (77 — 67 — 3)1°] s + 4, 0<s<1 (4.16)

E(v,T,s) o (1672 — 8(7° +47% + 74+ 2)v° + (1 + 27 + 5)*] §°

(4.17)
+8[4r+ (r* =67 —3)*]s+16, 0<s<1

NASA/TM—2005-213627 11



and
Fr,r,5) & (1 =122 = 72)s* = [27(1—7) + B+ 7] s +4r, 0<s<1 (418)

Then, by using Eqgs. (4.5), (4.6), and (4.11)—(4.14), it can be shown that

E(w,7,s)=[X(w,7,0)] +[Y(v,7,0)] >0 (4.19)
D(v,7,8) — VE(v,7,5) =2(1+7)* (1 — |A+]?) (1 — [A_]?) (4.20)

and
F(v,7,8) = (14+7)% (1= [AL]?|A=?) (4.21)

As a preliminary to the future development, let
H(v,T,s) def [D(v,T,5)]> — E(v,T,5) (4.22)
Then Eqgs. (4.16) and (4.17) imply that
H(v,7,8) =4(1 — v*)s*G(v, T, 5) (4.23)
where

G(v,7,8) = (1= (1% = v?)?s® + (2 = V°) [1/272 + (4 — 60%)T — 3V2] s

(4.24)
+4r [P+ (11— =%, 0<s<1

With the above preparations, we have Theorem 6.

Theorem 6. (A) For any (v, 7), the condition Eq. (4.2) is equvalent to the conditions

D(v,T,s) >0, 0<s<1 (4.25)

H(v,7,s) >0, 0<s<1 (4.26)
and

F(v,71,s) >0, 0<s<1 (4.27)

(B) Egs. (4.25)—(4.27) are necessary conditions for any (v, 7) to be ¢-7 stable.

Proof. Part B is an immediate result of part A and Theorem 4. Thus only part A
needs to be proved. To proceed, note that |\ | <1 and |[A_| <1 if and only if (i)

(L= P) (1= A-) =0

and (ii)
(1= A PA-P) 2 0,

NASA/TM—2005-213627 12



Thus, by using Egs. (3.5), (2.4), (4.15), (4.20), and (4.21), it is easy to see that Eq. (4.2)
is equivalent to Eq. (4.27) and

D(v,7,8) —\/E(v,71,5) >0, 0<s<1 (4.28)

As a result, to complete the proof, one needs only to show that Eqs. (4.25) and (4.26) is
equivalent to Eq. (4.28).

To proceed, for simplicity, in the following D(v, 1,s), E(v,1,s), F(v,1,s), G(v, T, s),
and H (v, 1,s) may be abbreviated as D, E, F, G, and H, respectively. By using the fact
that £ > 0 (see Eq. (4.19)), it is easy to show that the condition D —+/E > 0 implies that
(i) D > 0 and (i)

D>~ E=(D+VE)D-VE)>0 (4.29)

Thus, with the aid of Eq. (4.22), one concludes that Eq. (4.28) implies both Eqgs. (4.25)
and (4.26).
To show that Eqs. (4.25) and (4.26) imply Eq. (4.28), note that

D—-VE=D>0 ifD>0and E =0 (4.30)

Moreover, because D ++E > 0if D > 0 and E > 0, one has
D2_E . 2
D—\F:Dizo if D>0, D>~ E>0, and E >0 (4.31)

Thus, with the aid of Eqs. (4.19), (4.22), (4.30) and (4.31), one concludes that Eqgs. (4.25)
and (4.26) indeed imply Eq. (4.28). QED.

At this juncture note that, given any (v, 1), D(v,1,s), F(v,1,s) and G(v, T, s) are all
quadratic polynomials in s and thus their minimum values in the interval 0 < s < 1 are
easy to evaluate. As will be shown, this makes the analytical study of Eqs. (4.25)—(4.27)
a relatively simple one. This is very fortunate because, according to Theorem 6, these
equations play key roles in the current stability study.

To proceed, note that an immediate result of Theorem 6 is Theorem 7.

Theorem 7. (i) D(v,7,0) > 0, (ii) D(v,7,1) > 0, (iii) F(v,7,0) > 0, (iv) F(v,7,1) >
0, (v) H(v,7,0) > 0, and (vi) H(v,7,1) > 0 are all necessary conditions for a given (v, 7)
to be c-7 stable.

To study conditions (i)—(vi) referred to above, Eqgs. (4.16) (4.18), (4.23), and (4.24)
are used to yield

D(v,1,0) =4 (4.32)
D(v,1,1)= (2 — 1/2)7'2 +2(2 — 3V2)7' + w4 — 5244 (4.33)
F(v,7,0) =41 (4.34)
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Fv,7,1) = 2+ 7+ 1) (1 —1?) (4.35)
H(v,7,0)=0 (4.36)

and
H(v,7,1) =41 - v*)(t = v*)* [(24 7)* — V7] (4.37)

According to Egs. (4.32) and (4.36), conditions (i) and (v) referred to in Theorem 7 are
satisfied automatically. The significance of other conditions will be partially addressed in
the following Theorems 8-11.

Theorem 8. F(v,7,0) >0 and F(v,7,1) > 0 if and only if 7 > 1.

Proof. According to Eq. (4.34), F(v,7,0) > 0 if and only if 7 > 0. With the aid of
Eq. (4.35) and the fact that 2+ 7+ v? > 0 if 7 > 0, one concludes that F(v,7,0) > 0
and F(v,7,1) > 0 imply 7 > v?. Conversely, it is easy to see that F(v,7,0) > 0 and
F(v,7,1) > 0if 7 > 2. QED.

Theorem 9. Let 7 > v2. Then H(v,7,1) > 0 if and only if 7 > v? and v? < 1.

Proof. With the aid of the assumption 7 > v? and Eq. (4.37), H(v,7,1) > 0 implies

(i) 7 > v? and (ii)
V-1 = 24717 >0 (4.38)

Because 7 > v? implies 7 > 0 and thus v? — 1 > v? — (2 + 7)2, conditions (i) and (ii)
imply either (a) ¥? < 1 or (b) v? > (2 + 7)2. Case (b) can be ruled out because it along
with condition (i) implies 7 > (2+7)?, a result inconsistent with 7 > 0 which follows from
condition (i). Thus H(v,7,1) > 0 implies 7 > v and v? < 1, if 7 > /2 is assumed.

Conversely, because (2+7)% > 7 > v? if 7 > 1%, Eq. (4.37) implies that H (v, 7,1) > 0
if 7 > 1% and v? < 1. Thus the proof is completed. QED.

Theorem 10. Let 7 > v2. Then H(v,7,1) = 0 if and only if at least one of the two
cases: (i) 7 =12 and (ii) v? = 1, is true.

Proof. Eq. (4.37) implies that H(v,7,1) = 0 if and only if at least one of the three
cases: (i) v? =1, (ii) 7 = v?, and (iii) v? = (2 + 7)?, is true. Case (iii) can be ruled out
because it along with the assumption 7 > v? implies 7 > (2 + 7)?, a result inconsistent
with 7 > 0 (which follows from 7 > v2?). Thus the proof is completed. QED.

Theorem 11. Let 7 = v2. Then D(v,7,1) > 0 if and only if v? < 1.
Proof. Let 7 = v2. Then Eq. (4.33) implies that

D(v,7,1) = (1 — 7)(7%* + 37 + 4) (r=1?) (4.39)
With the aid of Eq. (4.39) and the fact that

T2+ 3r4+4=(1+3/2)*+7/4>7/4, —00 < T < +00 (4.40)
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it is easy to see that, assuming 7 = v, D(v,7,1) > 0 if and only if ? < 1. QED.

According to Theorems 8-10, the conditions (i) F(v,7,0) > 0, (ii) F(v,7,1) > 0, and
(iii) H(v,7,1) > 0 require that 7 = v/? if the conditions 7 > v? and v? < 1 are not satisfied
simultaneously. On the other hand, according to Theorem 11, the condition D(v,7,1) > 0
requires that v? < 1 for the case 7 = v?. Thus one has Theorem 12.

Theorem 12. The conditions (i) D(v,7,1) > 0, (ii) F(v,7,0) > 0, (iii) F(v,7,1) > 0,
and (iv) H(v,7,1) > 0 require that 7 > v? and v? < 1. As such, Theorem 7 implies that

r>v? and 1*<1 (4.41)

are necessary conditions for a given (v, 7) to be ¢-7 stable.

In the following, it will be shown that only a subset of those 7 and v that satisfy
the necessary conditions Eq. (4.41) will also satisfy the sufficient conditions for stability.
As a prerequisite, we shall first study the conditions under which the matrix Q(v, 7, 0) is
defective if 7 and v satisfy Eq. (4.41). We begin with Theorem 13.

Theorem 13. Let 7 > v? and v?2 < 1. Then Q(v, 7, 60) is defective if and only if
414 7) =41 + 27+ 5) (4.42)

and
cos(6/2) =0 (4.43)

Proof. Assuming 7 > v? and v? < 1, first we will show that
Ay (v, 7,0) = A_(v,1,0) (4.44)

if and only if Eqgs. (4.42) and (4.43) are satisfied. According to Eq. (4.10), Eq. (4.44) is
equivalent to

VXZ4Y24X=0 and VX2+Y2- X =0 (4.45)

Thus Eq. (4.44) is true if and only if
X=Y=0 (4.46)
According to Eq. (4.6), Y = 0 if and only if at least one of the four cases: (a) v =0,

(b) 7 =1, (c) sin(6/2) = 0, and (d) cos(6/2) = 0, is true. For case (a) v = 0, Egs. (4.5)
and the assumption 7 > v? imply that

X =4[1+7sin*(0/2)] >4 (v =0) (4.47)

Thus case (a) is incompatible with Eq. (4.46).
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For case (b) 7 =1, Eq. (4.5) implies that
X = 4cos?(6/2) + 8(1 — v*) sin?(0/2) (r=1) (4.48)

Using the assumption v? < 1, Eq. (4.48) implies that, for case (b), X = 0 if and only if
v? =1 and cos(0/2) = 0.

Because cos?(0/2) = 1 if sin(0/2) = 0, Eq. (4.5) implies that X = 4 if sin(0/2) = 0.
Thus case (c) is incompatible with Eq. (4.46).

Because sin?(/2) = 1 if cos(/2) = 0, Eq. (4.5) implies that

X=41+71)—v*(r?*+27+5) (cos(6/2) = 0) (4.49)

if cos(0/2) = 0. Thus, for case (d), X = 0 if and only if Eq. (4.42) is satisfied.
Assuming 7 > v? and v? < 1, it has been shown that X = Y = 0 if and only if at
least one of the following two conditions: (i)

=1, v =1, and cos(6/2)=0 (i.e., case (b))
and (ii)
cos(0/2) =0 and 4(1+7)=1*(7*+27+5) (i.e., case (d))

is met. Because 7 = 1 and v? = 1 form a special solution of Eq. (4.42), condition (i) is
only a special case of condition (ii). Thus, assuming 7 > v? and v? < 1, Eq. (4.44) (which
is equivalent to X =Y = 0) is true if and only if Eqs. (4.42) and (4.43) are satisfied.
Moreover, with the aid of Eq. (2.8) and the fact that sin(6/2) = £1 if cos(6/2) = 0,
Eq. (4.43) also implies that one of the off-diagonal elements of Q(v, 7, 6) does not vanish
and thus Q(v, 7, 0) is not a multiple of I. According to Theorem 1, Q(v, 7, 0) is defective if
and only if (i) Eq. (4.44) is true and (ii) Q(v, 7, 0) is not a multiple of I. Thus the current
theorem is proved. QED.

An immediate result of Theorem 13 is Theorem 14.
Theorem 14. The matrix Q(v, 7, 0) is defective if 7 = v? = 1 and cos(6/2) = 0.
To proceed, we will establish Theorem 15.

Theorem 15. Let Q(v,7,0) be defective with 7 > 12 and v? < 1. Then the special
case

p(Qv,7,0)) =1 (4.50)

occurs if and only if
r=v?=1, and cos(/2)=0 (4.51)

Proof. As a preliminary, first we will deduce several results from the current basic
assumption, i.e., Q(v, 1, 0) is defective with 7 > v? and v? < 1. According to Theorem 13
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and its proof, Eqs. (4.42), (4.43), and (4.46) follow immediately from the basic assumption.
Also, by using Eq. (4.42) and the fact that

2 r2r+5=(1+7)+4>4, —00 < T < +00 (4.52)
one concludes that 101 )
2 + T

e S A 4.53

v T2 4+ 2745 ( )

Moreover, because sin(f/2) = £1 if cos(8/2) = 0, with the aid of Eqgs. (4.43) and (4.46),

Eq. (4.10) implies that

v(3+T)

2(1+17)
Next assume Eq. (4.50). Because 3 + 7 > 0 (which follows from the assumption

7 > v?), Egs. (4.50) and (4.54) imply that

p(Qv,7,0)) = (4.54)

4(1471)2

2

= 4.55

SERNEEESE (4.55)
Eliminating v? from Eqgs. (4.53) and (4.55) and using the basic assumption Eq. (2.4) (which
is consistent with the current assumption 7 > v?), one has

P42l r—4=(r—-1D)(*+374+4) =0 (4.56)

Eq. (4.56) coupled with Eq. (4.40) implies that 7 = 1. In turn, by using either Eq. (4.53)
or Eq. (4.55), one has v? = 1 as a result of 7 = 1. Because Eq. (4.43) (i.e., cos(0/2) = 0) is
a result of the basic assumption, it has been shown that Eq. (4.51) follows from the basic
assumption and Eq. (4.50).

Conversely, with the aid of (i) Theorem 1, and (ii) Egs. (2.8) and (3.5), it can be
shown by direct substitution that both the basic assumption and Eq. (4.50) are valid for
the special case Eq. (4.51). Thus the proof is completed. QED.

Next we have Theorem 16.

Theorem 16. A given (v, 7) satisfies Eq. (4.2) and yet is ¢-7 unstable if and only if
r=v2=1.

Proof. Theorems 6 and 12 imply that Eq. (4.41) is a result of Eq. (4.2). Thus,
according to Theorems 5 and 15, 7 = v? = 1 if (v, 7) satisfies Eq. (4.2) and is also c-7
unstable.

Conversely, Theorem 6 coupled with Eqs. (4.16), (4.18), and (4.23) implies that any
(v, 7) with 7 = 12 = 1 satisfies Eq. (4.2). Moreover, according to Theorems 3, 14 and 15,
such a (v, 7) is also ¢-7 unstable. Thus the proof is completed. QED.

At this juncture, note that Theorems 14 and 15 state that, for the special case
Eq. (4.51), Q(v,1,0) is defective with p(Q(v,7,0)) = 1. Thus, according to a com-
ment made following Eq. (3.16), for this special case, the magnitude of any element in
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[Q(v, 7,0)]™ will grow not faster than linearly with m. Because round-off errors associated
with a modern computer are in the order of 10710 or less, the instability associated with
this special case generally is very mild and may not be detected even after billions of time
steps have elapsed.

Next, by combining Theorems 6, 12 and 16, one arrives at Theorem 17.

Theorem 17. A given (v, 7) which does not satisfy Eq. (4.41) is ¢-7 unstable. On
the other hand, a given (v, 7) which satisfies Eq. (4.41) is ¢-7 stable if and only if (i) it
satisfies Egs. (4.25)—(4.27); and (ii) it does not belong to the special case T = v? = 1.

Compared to those given in Theorem 3, the necessary and sufficient stability conditions
given in Theorem 17 are much more explicit and easier to handle. As such, this theorem
will be used repeatedly in the rest of the development. In particular, it will be used to
establish Theorem 18.

Theorem 18. The c¢-7 scheme is stable for any one of the following special cases: (a)
v=0and 7>0;(b) v’ =1and 7> 1;and (c) 0 < v?> < 1 and 7 = |v|.

Proof. Let 0 < s < 1 throughout this proof. Then, with the aid of Eqs. (4.16), (4.18),
(4.23), and (4.24), for case (a) v =0 and 7 > 0, one has

D(v,7,8) = D(0,7,s)=2[1+7s)*+1] >4 (4.57)

F(v,7,5)=F(0,7,5) =7(2—5)(2+715) >0 (4.58)
and

H(v,7,8) = H(0,7,5) = 45°7%(2 + 75)* > 0 (4.59)

Because v = £1 if v? = 1, for case (b) ¥ =1 and 7 > 1, one has

D(v,7,s) = D(£1,7,5) = (1 —7)%s +4(1 —s5) > 0 (4.60)
F(v,1,8) = F(£1,7,8) = (1 = 7)?s + 4(1 —5) > 0 (4.61)

and
H(v,7,8)=H(+l,7,5) =0 (4.62)

Because 0 < v? < 1 and 7 = |v| if and only if v = £7 and 0 < 7 < 1, for case (c)
0 <v?<1andT=|v|, one has

D(v,7,8) = D(£7,7,8) =7(1 = 7)(8 + 57 — 7%)s + 4(1 — 75) > 0 (4.63)
F(v,7,8)=F(xr,7,8) =7(1 = 7) (1 + 7+ 2)s +47(1 — 5) > 0 (4.64)

and
H(v,7,8) = H(£T,7,5) = 167%(1 — 7)%(1 — 7)s* > 0 (4.65)
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Obviously cases (a) and (b) are special cases of the more general case defined by
Eq. (4.41). Moreover, because v? < |v] if 0 < v? < 1, case (c) is also a special case of the
more general case. In addition, none of cases (a)—(c) contains the special case 7 = v? = 1.
With the aid of these observations and Eqs. (4.57)—(4.65), Theorem 18 follows directly
from Theorem 17. QED.

Next let
p def {(v,1)|0 < v? < 1,7 >v? and 72 # 1*} (4.66)
U_ Y w,0<?<1,7>1%and 72 < 2} (4.67)
and .
U, e {(v,")|0 < v? < 1,7 >v? and 72 > 1/*} (4.68)

Then ¥_ and ¥, are disjoint, and
UV=v,uvw_ (4.69)

Moreover, we have Theorems 19 and 20.

Theorem 19. Excluding the four special cases addressed in Theorems 16 and 18,
U is the set of all other (v, 7) that satisfy the necessary stability conditions 7 > v? and
v? <1 given in Theorem 12.

Proof. Note that (i) 7 = |v| > 2 if 0 < v? < 1 and 7 = |v|; (ii) 72 =2 if 7 = |v],
(iii) 7 = |v| if 7 > v? and 72 = 12, and (iv) 7 = 72 = 1?2 implies either 72 = v? = 0
or 72 = v? = 1. Ttems (i)—(iii) imply that 0 < v?> < 1 and 7 = |v| (which is case (c) in
Theorem 18) if and only if 0 < v? < 1, 7 > v, and 72 = 2. On the other hand, item (iv)
implies that the case with both 0 < v? < 1 and 7 = 72 = v? does not exist. The proof
follows from the above two observations and the facts that (i) 7 > v? = 0 if and only if
v=0and 7 >0, and (ii) 7 > v* = 1 if and only if either (a) 7 =v? =1 or (b) v?> = 1 and
7> 1. QED.

Theorem 20. Eq. (4.68) is equivalent to

e ={(n)0<v’<1,7>vand 7° > 1%} (4.70)

Proof. Note that (i) v* > 2 if 7 = 2 and 72 > 2, and (ii) the relations v* > % and
0 < v? < 1 are contradictory. Thus the case with 0 < v? < 1, 7 = 2, and 72 > 2 does
not exist, i.e., Eq. (4.68) is equivalent to Eq. (4.70). QED.

To proceed, we will establish Theorems 21 and 22.
Theorem 21. Let (v,7) € U. Then

D(v,7,s) >0, 0<s<1 (4.71)
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Proof. As a preliminary, note that Eq. (4.33) implies that

232\ 21— 1) (WA +12+2)
2 2
D(v,1,1) = (2 —v?) (T+ 2_V2) 22 ., vTF#E2 (4.72)
Thus
D(v,7,1)>0 if v* <1 (4.73)
Let (v,7) € U_. Then Eqgs. (4.16) and (4.67) imply that
2D
{W} — 41— ) (12— 1?) <0 (v,7) € T_) (4.74)
s v, T

i.e., for any given (v,7) € W_, the relation between the function D(v, 7, s) and s is repre-
sented by a curve which is concave downward on the s-D plane. Thus

Orgnsigl D(v,7,s) = min{D(v,7,0),D(v,7,1)} ((v,7) € W_) (4.75)

By using Eqgs. (4.32) and (4.73), Eq. (4.75) implies that
D(v,,s) >0, 0<s<1 (v, 7)€ U_) (4.76)
Next let (v,7) € U,. Then, by using Eq. (4.68) (in particular the facts that v? < 1
and (1 —v?)(7? — 1) > 0), Eq. (4.16) implies that

D(v,7,8) >[4+ (1 =67 = 3)v%| s+ 4 > [4rv* + (77 — 67 — 3)v°] s + 4
(4.77)
=(1—7)%%s+4(1 —v?s) > 0, 0<s<1 ((v,7) € Uy)

It has been shown that D(v,7,s) > 0, 0 < s < 1, for both case (a) (v,7) € ¥_ and
case (b) (v,7) € ¥ . Because ¥ = W_ U V¥, the proof is completed. QED.

Theorem 22. Let (v,7) € W. Then

F(v,7,s) >0, 0<s<1 (4.78)

Proof. Let (v,7) € ¥,. Then Egs. (4.18) and (4.68) imply that

|:62F(1/, T,S)

952 LT =2(1- y2)(]/2 _ 72) <0 ((v,7) € ¥y) (4.79)

i.e., for any given (v,7) € W, the relation between the function F(v,7,s) and s is repre-
sented by a curve which is concave downward on the s-F' plane. Thus

Orgnsigl F(v,7,s) = min{F(v,7,0), F(v,7,1)} ((v,7) € Uy) (4.80)

NASA/TM—2005-213627 20



By using Eqgs. (4.34), (4.35) and (4.70), Eq. (4.80) implies that
F(v,7,s) >0, 0<s<1 (v, 1) € Uy) (4.81)

Next let (v,7) € W_. Then, by using Eq. (4.67) (in particular the facts that (1 —
v)) (2 —=712)>0and 0 < 7 < |v| < 1), Eq. (4.18) implies that

OF (v,1,s)
0s

| —20-07 = - r -+ 54707

<21 -7 = 7°) = 2r(1—7) + 3+ 7°)7] (4.82)
=-2(1— y2)7'2 — ot 2r(1—7)—(1+ 7'2)1/2 <0,
0<s<1 ((v,7) € W_)

Thus, for any given (v,7) € U_, the relation between F' and s is represented by a curve
on the s-F plane which has a negative slope in the interval 0 < s < 1. In turn, this fact
coupled with Egs. (4.35) and (4.67) implies that

F(v,7,s) > F(v,7,1) >0, 0<s<1 (v, 7)€ W_) (4.83)
It has been shown that F(v,7,s) > 0, 0 < s < 1, for both case (a) (v,7) € ¥, and

case (b) (v,7) € ¥_. Because ¥ = W_ U ¥, the proof is completed. QED.

According to Theorems 21 and 22, Eqs. (4.25) and (4.27) are satisfied by all (v, 7) € .
Thus, Theorem 17 implies that a given (v,7) € W is ¢-7 stable if and only if it satisfies
Eq. (4.26). Thus, with the aid of Eqgs. (4.23) and (4.66), one arrives at Theorem 23.

Theorem 23. For any given (v, 7) € U, Eq. (4.26) is equivalent to

: S .
035121 G(v,7,5) >0 (4.84)

where the expression on the left side of the sign “>" denotes the infimum (i.e., the greatest
lower bound) of G(v,7,s) in the interval 0 < s < 1. As such, a given (v,7) € ¥ is ¢-7
stable if and only if it satisfies Eq. (4.84).

Because of Theorem 23, in the following we shall focus on finding those (v,7) € ¥ that
satisfy Eq. (4.84).

To proceed, first we will establish Theorem 24.
Theorem 24. For any given (v,7) € VU, let

(v, 7) def V272 + (4 — 60%)T — 302
So(v,T) =
2(1 = v2)(v? — 12)

(4.85)
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Let s,(v,T) be abbreviated as s,. Then
G(v,1,8,) if0<s,<1

: _ s .
OérSn;lG(y, T,8) Gv,1,1) ifs,>1 (4.86)

G(v,71,0) ifs, <0

Proof. To facilitate the proof, the domain of the function G defined in Eq. (4.24)
will be extended to —oo < s < 400. As such, for any given (v,7) € ¥ and any s with
—00 < 8§ < 400, one has

{%} vr =201 = v?)(7? = v*)? [5 — so(v, 7)] (4.87)
and 26

Thus, for any given (v,7) € ¥, (i) the relation between the function G(v,7,s) and s is
represented by a curve which is concave upward on the s-G plane, and thus the absolute
minimum of G in the interval —oco < s < +o0 occurs at where 9G/0s = 0, i.e.,

s = 8o(v,T) (4.89)

(ii) G is strictly monotonically decreasing in the interval s < 1 if s, > 1; and (iii) G is
strictly monotonically increasing in the interval s > 0 if s, < 0. In addition, for any given
(v, T), because G is a continuous function of s in the interval —oo < s < 400, one also has
(iv)
h%l+ G(v,1,s5)=G(v,T,0) (4.90)
s—

Eq. (4.86) is a direct result of (i)—(vi). QED.

With the aid of Theorem 24, the bulk of the remaider of the paper will be devoted to
answer a key question, i.e., given any v with 0 < v? < 1 (which is required by the condition
(v,7) € W), what is the range of 7 that will satisfy Eq. (4.84) and the rest of the condition
(v,7) € ¥ (ie., 7 >1v? and 72 # 1?)?

To proceed, let

det 3¢ — 2+ 2302 — 3z + 1

Iy () .

0<z<l1 (4.91)

and (iii)
d£f3:13—2:i: 2(x3 —x 4+ 2)
N 2—x

Ji(x) ) 0<zx<l1 (4.92)
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Hereafter, for any function f(x), as usual \/ f(z) denotes the principal square root of f(z).
As such \/f(z) > 0if f(x) > 0. Given Egs. (4.91) and (4.92), one can establish Theorem
25.

Theorem 25. In the domain 0 < x < 1, we have

Ii(x)>0 0<z<1) (4.93)
I_(x)<0 0<z<1) (4.94)
Ji(x) >0 0<x<1) (4.95)
and
J_(x) <0 0<x<1) (4.96)
Proof. Because

4(3z* — 3z + 1) = (3z — 2)? + 322 (4.97)

one has
2322 =3z +1 > |3z — 2|, x#0 (4.98)

Egs. (4.93) and (4.94) follow directly from Egs. (4.91) and (4.98).
Next because

2(x® — x4+ 2) = 3z — 2)% + 2z(x — 2) (x— g) (4.99)
one has
V2(x3 —x+2) > |3z — 2|, O<z<2 (4.100)

Egs. (4.95) and (4.96) follow directly from Egs. (4.92) and (4.100). QED.

With the above preparations and the understanding that hereafter the symbol “<”
may be used to take the place of the statement “if and only if”, Theorem 26 can now be
presented.

Theorem 26. (A) For any (v,7) € ¥_, we have

(>0 & 71>1.(7)
So(, )X =0 & 71=1I1,.(% ((v,7) € W) (4.101)

(<0 & 7<Ii(v?)

and
(>1 & 7> J.(07)

so(r, )¢ =1 & 7=J,.(? (v, 7)€ U_) (4.102)

(<1 < T < J+(V2)
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On the other hand, (B) for any (v,7) € ¥, we have

>0 & T<I. (V7
S$o(r,T) =0 & 1=1,(v? ((v,7) € Uy) (4.103)

<0 & 7>1,.(?

and
>1 & 7<J.(v?)

so(r, )¢ =1 & 71=J,.(? ((v,7) € Uy) (4.104)
<1l & 7>J,.(v?
Proof. As a preliminary, note that
i+ (-6 =37 =2 [r = 1 (vV?)] [t — I-(v?)] (0<v?<1) (4.105)
In addition, because 7 > v? and 0 < v? < 1 if (v,7) € ¥, Eq. (4.94) implies that
T—1_(v*) >0, (v,7) eV (4.106)

Because the expression on the left side of Eq. (4.105) is the numerator of the fraction
on the right side of Eq. (4.85), Eq. (4.101) now follows from Egs. (4.85), (4.105) and
(4.106), and the fact that 0 < v? < 1, and v* — 72 > 0if (v,7) € V_.

To prove Eq. (4.102), note that Eq. (4.85) implies that, for any (v,7) € ¥,

(2 —v2)712 + (4 —60%)7 — 2 (5 — 21?%)
2(1 —v?)(v? —712)

So(v,7) — 1= (4.107)

Also one has

=)+ d-6) T =15 -2%) =21 [t - JL (V)] [t - J-(v?)] (0<v® <)
(4.108)
In addition, because 7 > v? and 0 < v? < 1 if (v,7) € ¥, Eq. (4.96) implies that

T—J_(v*) >0, (v,7) €W (4.109)

Because the expression on the left side of Eq. (4.108) is the numerator of the fraction
on the right side of Eq. (4.107), Eq. (4.102) now follows from Eqs. (4.107)—(4.109), and
the fact that 0 < v?> < 1 and v? — 72 > 0if (v,7) € U_.

This finishes the proof of part A. Part B can be proved using a line of logic identical
to that used to prove part A. The only difference that sets part B apart from part A is
that v — 72 < 0 for the case (v, 7) € ¥ while v? — 72 > 0 for the case (v,7) € V_. QED.
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Next, note that Eq. (4.24) yields
Gv,7,1)= (1 =v*)?[(247)* = V]

and
G(v,7,0) =47 [V*7% + (1 — v*)1 — 1]
In addition, for any (v, 7) € ¥, Egs. (4.24) and (4.85) also yield

v3(1+71)2 [1/27'2 +2(v% —4)T + 9V2]
4(1 — v?)

G(v,1,8,) = —

An immediate result of Egs. (4.66) and (4.110) is Theorem 27.

Theorem 27. For any (v, 7) € U, we have
G(v,1,1) >0 ((v,7) € V)

Next let

(1£fl'—1:i:\/1—2x+5x2

K(z) 2x

0<z<xl

Then one has Theorems 28 and 29.

Theorem 28. In the domain 0 < z < 1, we have
K (x)>0 0<z<l)

and
K_(x) <0 0<z<1)

Proof. Because
1 -2z + 52 = (z — 1) + 42?

V1—=2z+5x2>|z—1|, x#0

Egs. (4.115) and (4.116) follow directly from Eqs. (4.114) and (4.118). QED.

one has

Theorem 29. For any (v,7) € ¥, we have

Gv, 7,00 >0 < 7>K,1? ((v,7) € U)

Proof. Note that

4T [y272 + (1 —vH)T — V2] = 471/° [7‘ — K+(y2)} [T - K_(y2)} ., 0<1i<«1

NASA/TM—2005-213627 25

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)



In addition, because 7 > v? and 0 < v? < 1 if (v,7) € ¥, Eq. (4.116) implies that
T—K_(v*) >0, (v, 7)€V (4.121)

Eq. (4.119) now follows from Egs. (4.111), (4.120) and (4.121), and the fact that 7 > v/?
and 0 < v? < 1if (v,7) € ¥. QED.

Next let
def 4 — 1 £24/2(2 — 1 — 2?)

Ly(x) - ) 0<z<l1 (4.122)

Then one has Theorems 30 and 31.

Theorem 30. In the domain 0 < x < 1, we have

Li(x)>L_(x)>0 0<z<1) (4.123)

Proof. Note that (i)
2—z—2°=—(z+2)(x—1) >0, —2<x<1 (4.124)
and (ii)
(4— )2 — [2 2(2—x—x2)]2:9x2 >0, x40 (4.125)
Thus
d—z=|4—z|>2/2Q@-2-22)>0, O<z<lor —2<z<0 (4.126)

Eq. (4.123) is a result of Egs. (4.122) and (4.126). QED.

Theorem 31. For any (v,7) € ¥, we have

G, 7,8,) >0 < L_(vV)<7<L (V%) (v, 1) € V) (4.127)

Proof. Note that
V42002 — ) r+ 0P =02 [r — Ly (V%) [ — L_(v?)] 0<v?<1) (4.128)

Because 1 +7 > 0, v > 0, and 1 —v? > 0 if (v,7) € ¥, Egs. (4.112) and (4.128) imply
that

G, 7,8,) >0 & [r—Ly(W?)][r—L-(v*)] <0 ((v,7)€ V) (4.129)

NASA/TM—2005-213627 26



if (v,7) € ¥. Because 0 < v < 1if (v,7) € ¥, Eq. (4.127) now follows from Eq. (4.129)
and a result of Eq. (4.123), i.e.,

[T —L-()] > [T =L (v?)], 0<v* <1 (4.130)

QED.
With the above preliminaries, one can establish Theorem 32.

Theorem 32. (A) Let (v,7) € U_. Then (v, 7) is ¢-7 stable if and only if it satisfies
one of the three mutually exclusive sets of conditions specified, respectively, in Eqs. (4.131)—
(4.133):

7> JL () (4.131)
K, (v*) <1 <I (v (4.132)

and
I,(V) <7< Ji(v?) and L_(v*) <7< Ly (4.133)

(B) Let (v,7) € ¥,. Then (v,7) is c-7 stable if and only if it satisfies one of the three
mutually exclusive sets of conditions specified, respectively, in Eqgs. (4.134)—(4.136):

< Jy (V?) (4.134)
r>1,(v") and 71> K, (V%) (4.135)

and
Jo(v?) <1t <I,(v*) and L_(v*) <7< Li(v?) (4.136)

Proof. Let

U (v, 1) € T and so(v, ) > 1} (4.137)
o E 0 ) (v, 1) € U_ and s,(v, 7) < 0} (4.138)
g0 {(v,7)|(v,7) € U_ and 0 < s,(v,7) < 1} (4.139)
v L )| (v, 7) € U and so(v, ) > 1} (4.140)
v L0 (v, 7) € Uy and s,(v,7) < 0} (4.141)

and
\IIS?) Lef (v, 7)|(v,7) € Uy and 0 < s,(v,7) < 1} (4.142)

Because W_ and ¥, are mutually exclusive, the above definitions imply that (i) \I!(_O‘),
v g \Ifgf‘), \Ifgf), and ‘Ifgj) are mutually exclusive; (ii)

v_=0Yur?®ygt (4.143)
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and (iii)
v, =v@ue?uel (4.144)
Moreover, by using Theorem 26, Eqgs. (4.137)—(4.142) imply

U = {(w,7)|(v,7) € U_ and T > J, (%)} (4.145)
g = {(v,7)|(v,7) € ¥_ and 7 < I, (v*)} (4.146)
v = (v, 7)|(v,7) € U_ and I (1?) < 7 < J.(1?)} (4.147)
U — {(v,7)|(v,7) € Uy and T < J (17)} (4.148)
v — {(,7)|(v,7) € Uy and 7 > I, (1?)} (4.149)
and
v = {(v,7)|(v,7) € Uy and J, (1) < T < I, (%)} (4.150)
respectively.

To proceed, note that:
(a) With the aid of (i) Egs. (4.137) and (4.140), and (ii) Theorems 24 and 27, Theorem

23 implies that a given (v, 7) € VASAY qfﬁ” is always c-7 stable.
(b) With the aid of (i) Egs. (4.138) and (4.141), and (ii) Theorems 24 and 29, Theorem
23 implies that a given (v, 7) € VACAY \I!Srm is c-1 stable if and only if

7> K (V%) (4.151)

(c) With the aid of (i) Egs. (4.139) and (4.142), and (ii) Theorems 24 and 31, Theorem
23 implies that a given (v, 7) € vy \If(ﬁ) is ¢-7 stable if and only if

L (V) <7< Ly (4.152)
Theorem 32 now follows from Eqs. (4.143)—(4.150) and the facts presented in the above
items (a)—(c). QED.

In principle, the question of whether a given (v, 7) is ¢-7 stable can now be answered
by using Theorems 12, 16, 18, 19, and 32. However, in its current complicated form,
Theorem 32 is difficult to use. Fortunately, Theorem 32 can be simplified greatly and, in
fact, the stability condition for the c-7 scheme can be cast into a rather simple explicit
form. To obtain this simple form, we begin with Theorem 33.

Theorem 33. We have: (A)

(r,T)eV_ & O0<rvi<landr? <7< V2 (4.153)
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(B) ¥_ is not empty; and (C)

(v,7)eEV, & 0<v?®<landrt> V12 (4.154)

Proof. Because (i) —vv2 < 17 < V12 if 72 < 12, and (ii) 72 < 12 if 0 < 7 < V12, part
A is an immediate result of Eq. (4.67). Part B follows from the trivial fact that v? < V12
if 0 < v? < 1. To prove part C, note that (i) 7 > 0 if 2 > 0 and 7 > v?, and (i) 7 > V12
if 7 > 0 and 72 > v2. Thus Eq. (4.70) implies that 0 < v?> < 1 and 7 > V22 if (v, 7) € ¥ .
Conversely, because (i) V22 > 12 if 0 < v? < 1; (ii) 7 > v if 7 > V22 and V2 > v,
and (iii) 72 > v? if 7 > V12, one concludes that (v,7) € U, if 0 < 2 < 1 and 7 > V2.
QED.

Next let ,
o ¥3-2/2 (4.155)
e ¥ 3/11 (4.156)
s (41— 7v/33)/2 (4.157)
and
} T

def 1664 181 1664 181 2
= —+=] - (V=== -3 4.158
“ ( 27+27> ( 27 27) 3 (4.158)

We have (i) ¢; ~ 0.172, ¢5 = 0.273, ¢3 ~ 0.394 and ¢4 =~ 0.530, and (ii)
O0<cp<ec<ecg<e<l1 (4.159)

With the above preparations, we have Theorem 34.

Theorem 34. (A) In the domain 0 < z < 1, I (x), Jy(x), K4 (z), and L_(x) are
strictly monotonically increasing while L (z) is strictly monotonically decreasing; (B) we
have

I.(z) <z < Ki(x) < L_(x) < Jy(z) < Vo < Ly(), 0<z<c (4.160)
ILi(z)=2< K (z) < L_(z) < Jy(x) < o < Li(x), T =c (4.161)
r<Iy(z)< K. (z)<L_(x) < Jy(z) < Vo< Li(x), 1 <T<co (4.162)
v <Ii(z)=Ki(z)=L_(2) < Jo(z) < Vo < Ly(z), a=cs (4.163)
r< Ky(z)<L_(z) <Ii(x)<Jy(z)<r<Li(x), o <z <cs (4.164)
r< K (x)<L_(z)<Iy(z)=Jy(z)=+zx < Li(x), T =cs3 (4.165)
r< K. (z)<L_(z) <V <Ji(x)<Il(x)<Ly(z), c3<x<cy (4.166)
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r< K (x)<L_(z)=vz<J(v) <I(v)<Li(x), T=cy (4.167)

and
< Ky(z) < Vo <L_(z)<Ji(z) <Ii(x)<Ly(z), ca <x <1 (4.168)
(©)
K, (c3) = L'_(c3) = 121/90 (4.169)
where K/, (z) & dK, (z)/dz and L' (z) & dL_(x)/dz; and (D)
lim L_(z)=0 and lim Ky(z)=1 (4.170)

In order not to interrupt the current stream of development, the lengthy proof for
Theorem 34 will be provided later in the paper. Here, with the aid of this theorem, we
shall establish a simplified form of the stability condition for the c-7 scheme as given in
Theorem 35.

Theorem 35. Let
(0 if =0
L_(z) if O0<ax<3/11

To(x) = (4.171)
Ki(z) if 3/11<z<1

(1 if r=1
I, def {(v,")|V? < 1,7 > 71,(V*) and (v2,7) # (1,1)} (4.172)
and
& {(v,")|v? <1 and 7 > 7,(v*)} (4.173)

Then: (A) 7,(x) is continuous at x = 0 and z = 1; (B) 7,(z) is consistently defined at
x =3/11; (C)

lim 7.(z)= lim 7)(z)=121/90 (4.174)
m—>%7 x—>%+
where 7/ (x) e dro(x)/dx; (D) 7,(z) is strictly monotonically increasing in the interval
0<z<1;(E)
T < To(z) < Vz, 0<z<1 (4.175)

(F) a given (v,7) is -7 stable if and only if (v,7) € T',; and (G) a given (v, 7) satisfies
Eq. (4.2) if and only if (v,7) € T

Proof. Part A is a result of Egs. (4.170) and (4.171). Part B follows from the fact
that L_(3/11) = K (3/11) = 1/3. Part C follows from Eqgs. (4.156) and (4.169). Part D
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is a result of part A of Theorem 34, and parts B and C of the current theorem. Part E is
a result of Eqs. (4.160)—(4.168) and (4.171).

To prove part F, one needs to show that: (i) (v,7) € T', for any (v,7) that is c-7
stable; and (ii) (v,7) ¢ T', for any (v, 7) that is ¢-7 unstable. Here whether any particular
(v,7) is ¢-7 stable is determined using Theorems 12, 16, 18, 19, and 35.

To proceed, let

o i) >1orr <P <1} (4.176)
O ¥, 1) r =12 =1} (4.177)

Dy {(v,7)|v* =0 and T > 0} (4.178)
o, ¥, )2 =1and T > 1} (4.179)
o5 {(v,7)|0<v* < 1and 7= |v|} (4.180)

With the aid Theorem 19, it is seen that W_, W, and the five sets defined above are
inclusive and yet mutually exclusive, i.e., any (v, 7) belongs to one and only one of these
sets. To facilitate the proof, ¥_ and W, , respectively, will be further divided into several
disjoint subsets to be defined immediately.

Let

g {(r,7)|0<1? < ¢pand v? < 7 < V12} (4.181)
v E L, )2 = ¢z and v? < 7 < Vi?) (4.182)
U E (1, 7)e; < v < ey and v? < 7 < Vi2) (4.183)
and
g {(v,7)|es <v? <1and v? <7< Vi?} (4.184)

Because (v,7) € ¥_ & 0 < v? <1 and v? < 7 < V12 (see Theorem 33), one concludes
that (i) \If(_é), ¢=1,2,3,4, are nonempty disjoint subsets of ¥_, and (ii)

U =uUi ot (4.185)

Next let .
\I!Srl) e {(v,7)|0 < v* < ¢3 and T > Vi2} (4.186)

and ,
\If(f) e (v,7)|es < v* <1 and 7 > Vi2} (4.187)

Because (v,7) € ¥, < 0 < v? <1 and 7 > V2 (see Theorem 33), one concludes that (i)
\Ifgrl) and \Il(f), are nonempty disjoint subsets of W, , and (ii)

v, =vPue? (4.188)
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From the above discussion, the sets (i) ®¢, £ = 1,2,3,4,5; (ii) \If(_é), ¢ =1,2,3,4; and

(iii) \If(+1) and \If(f), are inclusive and yet mutually exclusive, i.e., any (v, 7) must belong to
one and only one of these sets. Part F will be proved by showing that it is valid over each
of these sets in the following case-by-case discussions:

1.

(v,7) € ®;. According to Theorem 12, any (v,7) € ®; is ¢-7 unstable. Thus part F
is true over ®; if one can show that (v,7) ¢ T, if (v,7) € ®;. Because (v,7) ¢ T,
if 2 > 1 (see Eq. (4.172)), the proof for case 1 is completed if one can show that
(v,7) ¢ T, if T <v? < 1.

To proceed, note that Eq. (4.175) and the facts that 7,(0) = 0 and 7,(1) = 1 imply
that

v < 1,(v?), v <1 (4.189)

Thus 7 < 7,(¥?) if 7 < v? < 1. As a result of Eq. (4.172), this in turn implies that
(v,7) ¢ T, if 7 <v? < 1. As such part F is true over ®;.

. (v, 7) € ®3. According to Theorem 16, any (v, 7) € P2 is -7 unstable. Also, according

to Eq. (4.172), (v,7) ¢ T, if (v, 7) € ®2. Thus part F is true over ®,.

(v,7) € ®3. According to Theorem 18, any (v, 7) € @3 is c-7 stable. Because 7,(0) = 0,
Eq. (4.172) implies that (v,7) € T, if (v,7) € ®3. Thus part F is true over ®@s.

)
q. (
(v,7) € ®4. According to Theorem 18, any (v, 7) € @4 is ¢-7 stable. Because 7,(1) = 1,
Eq. (4.172) implies that (v,7) € T, if (v,7) € ®4. Thus part F is true over ®y.

)

(v,7) € ®5. According to Theorem 18, any (v,7) € ®5 is ¢-7 stable. On the other
hand, Eqs. (4.175) implies that
To(V?) < V12, 0<vi<l (4.190)

ie., To(v?) < V2 = |v] if 0 < v? < 1. This coupled with Eq. (4.172) implies that
(v,7)el, if (v,7) € ®5. Thus part F is true over ®5.

. (nT) € ¥ For this case, we have (i) 0 < v? < ¢, and (ii) v? < 7 < V2. To

proceed, Note that Eqgs. (4.160)—(4.162) imply that

I, (V) < Ky (v%), 0<v?< ey (4.191)
v: < L_(v?) < Jy (v?) < V2, 0<v?<e (4.192)

and
I (v®) < L_(v*) < J4 (v?) < Ly (v?), 0<1?< e (4.193)

Because Eq. (4.191) contradicts Eq. (4.132), Eq. (4.132) cannot be satisfied by any
(v,7) € g, Moreover, by using Eq. (4.192), it can be shown that
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where \If(_l’l), \If(_l’Q), and \If(_l’s) are nonempty disjoint sets defined by
WD o )]0 < 1P < ey and V¥ <7 < Lo (V7)) (4.195)
T )0 < v? <oy and L (v2) <7< T4 (17)} (4.196)
and det
P E (1, 7)]0 < 12 <z and Jy (1) < T < Vi) (4.197)

Thus any (v, 7) € U must fall into one and only one of the following three sub-cases:
() (v,7) € ¥V Gi) (v, 1) € B and (i) (v, 1) € TP,

Let (v,7) € g By using the relation L_(v?) < Jy(v?) which follows from
Eq. (4.192) or Eq. (4.193), it is seen that Eq. (4.131) cannot be true for the current
sub-case where v? < 7 < L_(v?). Also, the second part of Eq. (4.133), i.e., L_(v?) <
7 < Ly (v?), cannot be true for the sub-case. Moreover, for a reason given earlier,
Eq. (4.132) also cannot be true for the sub-case. According to part A of Theorem 32,

the above results imply that any (v, 7) € \119’1) is ¢-7 unstable. On the other hand,
because 7,(v?) = L_(v?) if 0 < v? < ¢y (see Egs. (4.156) and (4.171)), one concludes

that 7 < 7,(v?) and thus (v,7) ¢ T, if (v,7) € ¥ Ag such it has been shown that
part F is true over \If(_l’l).

Let (v,7) € 71?1t follows from Eq. (4.193) that Eq. (4.133) is satisfied by any
(v, 7) with L_(v?) < 7 < J,(v?). According to part A of Theorem 32 and Eq. (4.196),
this implies that any (v, 7) in the current sub-case is c-7 stable. On the other hand,
because 7,(v?) = L_(v?) if 0 < v? < ¢y, one concludes that 7 > 7,(v?) and thus

(v,7) € Ty if (v,7) € w2 As such, it has been shown that part F is true over
v,

Let (v,7) € g, Obviously Eq. (4.131) is true for the current sub-case where
Jy(v?) < 7 < V2. According to part A of Theorem 32, this implies that any (v, 7)
in the current sub-case is c-7 stable. On the other hand, because (i) 7,(v?) = L_(v?)
if 0 < 12 < ¢g, and (ii) the relation L_(v?) < J,(v?) is a part of Eq. (4.193), one
concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € U1 As such, it has been

shown that part F is true over \11(7173).
It has been shown that part F is true over each of the three nonempty disjoint sets

\If(_l’l), \If(_l’Q), and WP Eq. (4.194) now implies that part F is true over o,

7. (v,7) € U2, For this case, we have (i) v2 = ¢, and (ii) 2 < 7 < V2. To proceed,
Note that Eqgs. (4.163) implies that

V<, () =K. (V) =L_(V*) < J.(v*) < V2 < L, (v?), vi=cy (4.198)
With the aid of Eq. (4.198), it can be shown that

\I](_2) — \I](_271) U \I](_272) U \I[(_Qfg) U \I;(_274) (4199)
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where \If(_2’1), \If(_Q’Q), \If(_2’3), and \If(_2’4) are nonempty disjoint sets defined by
g def (v, T)[V? = cy and v? < 7 < L_(v?)} (4.200)
vED LA, 7)? = oy and 7 = L_(1*)} (4.201)
g (23) def {(v,")|V? = cy and L_(v*) < 1 < JL(v*)} (4.202)
and ;
vV E (v, 7)p? = cp and T4 (v?) < 7 < Vo2 (4.203)

Thus any (v, 7) € 7@ must fall into one and only one of the following four sub-cases:
() (v,7) € T2V i) (v, 7) € U2 (i) (v, 7) € U3 and (iv) (v, 7) € TP,

Let (v,7) € ¥ By using the relation L_(v?) < Jy(v?) which follows from
Eq. (4.198), it is seen that Eq. (4.131) cannot be true for the current sub-case where
v? <17 < L_(v?). Moreover, by using the relation I, (v?) = K (v?) = L_(v?) which
also follows from Eq. (4.198), it is seen that Eq. (4.132) also cannot be true for the
sub-case. In addition, the second part of Eq. (4.133) also cannot be true for the sub-
case. According to part A of Theorem 32, this implies that any (v,7) € oY g er
unstable. On the other hand, because 7,(v?) = L_(v?) if v? = ca, one concludes that
T < 7o(v?) and thus (v,7) ¢ T, if (v,7) € Y As such it has been shown that part

F is true over \P@’l).

Let (v, 1) € 732, By using the relation I, (v?) = K, (v?) = L_(v?) which follows
from Eq. (4.198), it is seen that Eq. (4.132) is true for the current sub-case where

7= L_(v?). According to part A of Theorem 32, this implies that any (v, 7) € g2
is c-7 stable. On the other hand, because 7,(v?) = L_(v?) if v? = ¢, one concludes

that 7 = 7,(v?) and thus (v,7) € T, if (v, 7) € 2?2 As such it has been shown that
part F is true over \II(_Q’Q).

Let (v,7) € %%, By using the relation I, (v2) = L_(12) < J.(v?) < L. (v?)
which follows from Eq. (4.198), it is seen that Eq. (4.133) is true for the current case
where L_(v?) < 7 < Jy(v?). According to part A of Theorem 32, this implies that

any (v,7) € U is ¢ stable. On the other hand, because 7,(v2) = L_(v?) if
v? = ¢y, one concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € v2¥ | As such
it has been shown that part F is true over @9’3).

Let (v,7) € gD, Obviously Eq. (4.131) is true for the current sub-case where

J(v?) <71 < V2. According to part A of Theorem 32, this implies that any (v, 7) in
the current sub-case is ¢-7 stable. On the other hand, because (i) 7,(v?) = L_(v?) if
v? = cg, and (ii) the relation L_(v?) < J, (v?) is a part of Eq. (4.198), one concludes

that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € 2% " As such, it has been shown
that part F is true over ‘I!(_2’4).
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It has been shown that part F is true over each of the four nonempty disjoint sets
\119’1), \P£2’2), \119’3), and ¥ Eq. (4.199) now implies that part F is true over @,

8. (v,7) € U3 For this case, we have (i) ca < v? < 3, and (ii) v* < 7 < V2. To
proceed, Note that Eqgs. (4.164) implies that

V<K (W) <L (W) <I (V)< J (V) <Vi2<Li(v?), c<v?®<cs
(4.204)
With the aid of Eq. (4.204), it can be shown that
v = gCV et gty gty (4.205)

where \I'(f”l), \11(5”2), \11(5”3), and \11(5”4) are nonempty disjoint sets defined by

D L (1, 7y < v? < 3 and v? <7 < Ky (1)} (4.206)
(3,2) def 2 2 2
U = {(v,7)|ea < v < ez and Ky (v°) <7 <I;(v°)} (4.207)
WY L r)en < 1? < es and L (V) < 7 < J1(1A)} (4.208)
and ;
Y L (0, 7)|er < 12 < c3 and JL(v?) <7 < Vi) (4.209)

Thus any (v,7) € 7® must fall into one and only one of the following four sub-cases:
() (v,7) € U3V (i) (v, 1) € T3 i) (v, 1) € Y and (iv) (v, 7) € BEY,
Let (v,7) € ¥V By using the relation K. (v?) < Jy(v?) which follows from

Eq. (4.204), it is seen that Eq. (4.131) cannot be true for the current sub-case where
v? <1 < K, (v?). Moreover, obviously Eq. (4.132) is also not true for the sub-case.
In addition, by using the relation K (v?) < L_(v?) < I (v?) which also follows from
Eq. (4.204), one concludes that Eq. (4.133) also can not be true for the sub-case.

According to part A of Theorem 32, the above results imply that any (v, 7) € gD

is c-7 unstable. On the other hand, because 7,(v?) = K, (v?) if ca < v? < c3, one
concludes that 7 < 7,(v?) and thus (v,7) ¢ T, if (v,7) € U3 As such it has been
shown that part F is true over \If(f”l).

Let (v,7) € g2, Obviously Eq. (4.132) is true for the current sub-case where
K. (v?) < 7 < I,(v?). According to part A of Theorem 32, this implies that any

(v,7) € %% ig -7 stable. On the other hand, because 7,(v2) = K (12) if ¢ < 12 <
c3, one concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € 732 As such it
has been shown that part F is true over \11(5)”2).

Let (v, 1) € ¥3* By using the relation L_(v?) < I (v?) < Jo(v?) < Ly(v?)
which follows from Eq. (4.204), it is seen that Eq. (4.133) is true for the current case
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where I, (v?) < 7 < Jy(v?). According to part A of Theorem 32, this implies that
any (v,7) € U5 s 7 stable. On the other hand, because (i) 7o(v?) = K (v?)
if co < 12 < c3, and (ii) the relation K, (v?) < I, (v?) is a part of Eq. (4.204), one
concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € U533 As such it has been
shown that part F is true over \If(_g’?’).

Let (v,7) € VISl Obviously Eq. (4.131) is true for the current sub-case where

Jy(v?) <7 < V2. According to part A of Theorem 32, this implies that any (v, 7)
in the current sub-case is c-7 stable. On the other hand, because (i) 7,(v?) = K (v?)
if ca < % < ¢3, and (ii) the relation K, (v?) < Jy(v?) is a part of Eq. (4.204), one
concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € U3 Ag such, it has been

shown that part F is true over \I!(_?’A).
It has been shown that part F is true over each of the four nonempty disjoint sets

\If(f”l), \II(E”Q), \If(f”?’), and U3 Eq. (4.205) now implies that part F is true over o®),

9. (v,7) € U, For this case, we have (i) c5 < 12 < 1, and (ii) 2 < 7 < V2. To
proceed, Note that Eqgs. (4.165)—(4.168) implies that

V2 < KL (V) < V2 < JL(v?) < I (VP) < Lo (vV?), s <1<l (4.210)
With the aid of Eq. (4.210), it can be shown that
VA SN UR e (4.211)

where U4 and 4% are nonempty disjoint sets defined by

oD L r)es <% < 1and 12 <7 < Ky (V2)} (4.212)
and ;
g*2) & {(v,7)|es <v? <1and K, (v*) <7< Vi2} (4.213)

Thus any (v, T) € ™ must fall into one and only one of the following two sub-cases:
(i) (v,7) € oY and (ii) (v,7) € g2,

Let (v,7) € Y By using the relation K. (v?) < Jy(v?) < I (v?) which follows
from Eq. (4.210), it is seen that none of Eqs. (4.131)—(4.133) is true for the current
sub-case where v? < 7 < K, (v?). According to part A of Theorem 32, this implies

that any (v,7) € " is c-r unstable. On the other hand, because 7,(v2) = K, (1?)
if c3 < v? < 1, one concludes that 7 < 7,(v?) and thus (v,7) ¢ T, if (v,7) € gb,
As such it has been shown that part F is true over \I!(f’l).

Let (v,7) € v*? By using the relation K. (v?) < vv2 < I, (v?) which follows
from Eq. (4.210), it is seen that Eq. (4.132) is true for the current sub-case where
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K, (v?) < 7 < V2. According to part A of Theorem 32, this implies that any
(v,T) € U2 is c7 stable. On the other hand, because o(1V?) = K (v?) ife3 <12 <
1, one concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € U2 As such it has
been shown that part F is true over \1,(7472).

It has been shown that part F is true over each of the two nonempty disjoint sets

oY and o2, Eq. (4.211) now implies that part F is true over o,

10. (v,7) € \I!Srl). For this case, we have (i) 0 < v? < ¢3, and (ii) 7 > Vv2. To proceed,
Note that Eqgs. (4.160)—(4.165) imply that

I, (V%) < V2, 0<v?<cs (4.214)

K, (V%) < V2, 0<v?<cy (4.215)
and

L_(v*) < V2, 0<v?<es (4.216)

By using Eqs. (4.214) and (4.215), one concludes that Eq. (4.135) is true for the current
case where 7 > V2. According to part B of Theorem 32, this implies that any (v, T)
in the current case is ¢-7 stable. On the other hand, because (i) 7,(v?) = L_(v?) if
0 < v? < e, and (ii) 7,(v?) = Ky (v?) if ca < v? < ¢3, Egs. (4.215) and (4.216) imply
that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € \If(+1). As such, it has been shown that
part F is true over \Ifgrl).

11. (v,7) € \Iff). For this case, we have (i) ¢3 < v? < 1, and (ii) 7 > V2. To proceed,
Note that Eqgs. (4.166)—(4.168) imply that

K (1) < V2 < J (V) < I, (VP), 3 <1 <1 (4.217)
and
L_(v*) < J (V) < I (v*) < Ly(v?), 3 <<l (4.218)

By using Eq. (4.217), one has
v — e e e (4.219)

where \I'f’l), \I!f’2), and \I!(f’?’) are nonempty disjoint sets defined by

\I!fvl) = (v, T)es < v? < 1and V2 <1 < Jp(V?)) (4.220)
(2,2) def 2 2 2
VoY = {(v,7)es <v® <land Jp(v7) <7 < I (v°)} (4.221)
and ;
W29 4 1, ey < v? < 1and 7 > I, (v%)) (4.222)
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Thus any (v, 7) € \Iff) must fall into one and only one of the following three sub-cases:
() (v,7) € WPV (i) (v,7) € WP and (iii) (v, 7) € WPP.

Let (v,7) € \I!f’l). Eq. (4.134) is true for any (v, 7) in the current sub-case where
V12 < 7 < Jp(v?). According to part B of Theorem 32, this implies that the any
(v,7) € \Iff’l) is c-1 stable. On the other hand, because (i) 7,(v?) = K, (v?) if
c5 < 7 < 1, and (ii) the relation K, (v?) < V2 is a part of Eq. (4.217), one concludes
that 7 > 7,(v?) and thus (v,7) € T, if (v, 7) € \If(f’l). As such it has been shown that
part F is true over \Ilf’l).

Let (v,7) € \Iff’Q). By using Eq. (4.218), one concludes that Eq. (4.136) is true
for the current case where J,(v?) < 7 < I, (v?). According to part B of Theorem
32, this implies that any (v, 7) € \I'f’2) is ¢-7 stable. On the other hand, because (i)
T.(1?) = Ky (v?) if c3 < v? < 1, and (ii) the relation K| (v?) < J4(v?) is a part of
Eq. (4.217), one concludes that 7 > 7,(v?) and thus (v,7) € T, if (v,7) € \I!f’2). As
such it has been shown that part F is true over \Iff’z).

Let (v,7) € \Iff’g). By using the relation K (v?) < I;(v?) which follows from
Eq. (4.217), one concludes that Eq. (4.135) is true for the current sub-case where
7 > I, (v?). According to part B of Theorem 32, this implies that any (v, 7) € \If(f’?’)
is c-7 stable. On the other hand, because (i) 7,(v?) = K (v?) if e3 < 2 < 1, and (ii)
the relation K, (v?) < I (v?) is a part of Eq. (4.217), one concludes that 7 > 7,(?)

and thus (v,7) € T, if (v,7) € \I!f’?’). As such, it has been shown that part F is true
over \Ilf’?’).

It has been shown that part F is true over each of the three nonempty disjoint sets
\If(f’l), \1153’2), and \I!f’?’). Eq. (4.219) now implies that part F is true over \If(f).

It has been established that part F is true over each of the sets mentioned in the
paragraph immediately following Eq. (4.188). Because any (v, 7) must belong to one and
only one of these sets, the proof of part F is completed.

Finally, with the aid of Theorems 4 and 16, one can obtain part G from part F. QED.

As promised earlier, a proof for Theorem 34 will be provided in the remainder of the
paper. As a preliminary, we have Theorem 36.

Theorem 36. In the domain 0 < x < 1, (A) I (z), J+(x), K4 (z), and L_(x) are
strictly monotonically increasing while L (z) is strictly monotonically decreasing. More-
over, we have (B)

3> 1Ii(x) >0, 0<z<l1 (4.223)
3> Jy(xz)>0 0<z<l (4.224)
1> Ky(x) >0, 0<z<l1 (4.225)
3>L_(z)>0 0<zx<l1 (4.226)
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and
Li(z) > 3, 0<z<l1 (4.227)

Proof. Let f'(z) e df (z)/dx for any function f of . Then (i) Egs. (4.91) and (4.98)

imply that
3r—2+2v3x2 -3 1
[(a)= 202V ZovE L 0<z<1 (4.228)
22322 — 3z + 1
(ii) Egs. (4.92) and (4.100) imply that
T () = —23 + 622 —x + 2+ 4/2(2® —z + 2)
* (2 —x)2y/2(x3 —x +2)
(4.229)

21— ) 452 414 (1- ) + 430 719

:x( x)+br+1+(1—2x)+ (z x+)>0’ 0<z<l
(2—12)2/2(x3 —x+2)

(iii) Egs. (4.114) and (4.118) imply that

V1—2x+ 522 - (1—x)
2221 — 2z + a2

(iv) Egs. (4.122) and (4.126) imply that

K’ (x) =

> 0, 0<zx<l1 (4.230)

2[4—95—2 2(2—1:—1:2)}

L@ = x24/2(2 — x — x?)

> 0, 0<z<l1 (4.231)

and (v) Egs. (4.122) and (4.126) imply that

QP_x+2¢ﬂ7r;tzﬂ
<

L@ =~ x2y/2(2 — x — x?)

0, 0<z<l (4.232)

Thus part A is true.
Moreover, by using (i) Egs. (4.91), (4.92), (4.114), and (4.122), and (ii) L’hopital’s
rule, one has (i)

lim /i (z)= lim Jy(z)= lim L_(z)= lim Ly(z)=3, and lim K, (z)=1

r—1— rx—1— r—1— r—1— r—1—
(4.233)
(ii)
lim I, (z) = li <3+ bz — 3 ) 3+ (—3)=0 (4.234)
im )= lim = —3) = .
so0t T 2Ot 322 — 3z + 1
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lim J,(z) =0 (4.235)

1 5z — 1 1
lim K, (z)= lim = (1 —-(1-1)=0 4.236
and (v)
2(1+2
lim L (z) = lim |—14——20F28) |44 (4.237)
z—0+ z—0+ 22—z —z?)

part B now follows from Part A and Egs. (4.233)—(4.237). QED

An immediate result of Theorem 36 and the fact that 0 <z < Vz <1if0 <z <1 is
given in Theorem 37.

Theorem 37. We have

v <Vr <Ly(x), Ii(r)<Li(x), Jy(z)<Li(w),

Ki(z) < Ly(z) and L_(z)< Li(x), 0<z<l (4.238)

Theorem 37 is but one of many algebraic relations that are needed in the proof of
Theorem 34. Note that, in establishing other needed relations, several inequalities that
involve the four prinicipal square roots that appear in the definitions of Iy (x), Ji(z),
Ki(z), and Li(x), i.e.,

V3z2 —-3x+1>0, —00 < x < 400 (4.239)
V2(x3 —x+2) >0, O<z<2 (4.240)
V1—2x+5x2>0, —00 <z < 400 (4.241)
and
22—x—22) >0, —-2<zr<l1 (4.242)

(which follow from Egs. (4.97), (4.100), (4.117), and (4.124), respectively) will be used
repeatedly. Also to be used often is the following algebraic property:

Property I. Let a > 0 and b > 0. Then

>0 &S a—b>0
-, =0 < a—-b=0 (4.243)

<0 S a—b<0
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With the above preparations, a set of relations will be given in Theorems 38-48.

Theorem 38. We have
>0 if 0<z<3-2V2
r—I () =0 if 2=3-—2V2 (4.244)

<0 if 3—2v2<zx<1

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.91) implies that

2 _3x4+2—-2V322 -3z +1
p— T (2)= 20 v ST (4.245)

T

With the aid of Property I, Eq. (4.244) is a result of Eq. (4.245) and the following relations:
(i) Eq. (4.239); (ii)
22 =3z +2=(x—1)(z—2)>0 (4.246)

(iii)

2
(a:2—3x+2)2—< 3x2—3x+1) — 22(2? — 62+ 1)

(4.247)
= 22 [m (34 2\/5)] [x —(3- 2\/5)}
and (iv) 0 < 3 —2v2 < 1 < 3+ 2v2. QED.
Theorem 39. We have

x < Ky(x), 0<zx<l1 (4.248)

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.114) implies that

VI—2z+522 — (222 —x+1

K (z)—z= v 52% - (227 —wt 1) (4.249)

2x

With the aid of Property I, Eq. (4.248) is a result of Eq. (4.249) and the following relations:
(i) Eq. (4.241); (i)

207 —x+1=2(x—1/4)*+7/8>17/8 (4.250)
and (iii)
2
(\/1—2x+5x2) 22— a4+ 1)2 =421 —2) > 0 (4.251)
QED.
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Theorem 40. Let ¢35 be the constant defined in Eq. (4.157). Then

>0 if 0<z<cs
V=TI (x){ =0 if z=c3 (4.252)
<0 if gs<axxl

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.91) implies that

-3 2—2v3x? -3 1
Vi — I (x) = x/x — 3z + V3x x + (4.253)

T

With the aid of Property I, Eq. (4.252) is a result of Eq. (4.253) and the following relations:
(i) Eq. (4.239); (ii)

ev/r—3r+2=(1-vVz)[1+2Vz+ (1-2)] >0 (4.254)
(i)
(x\/_—3x+2)2—( 3962—3:(:—1—1)2:x3—6x5/2—3x2+4x3/2

L\/ﬁ) (\/5_ 7_7@) (4.255)

:xS/Q(‘/EH)(\/E_ 2 >

2
(iv) 0 < (7T—33)/2 < 1 < (7+V/33)/2; and (v) c5 = [(7— \/ﬁ)/Q] . QED.
Theorem 41. Let ¢35 be the constant defined in Eq. (4.157). Then

>0 if O<zxz<ecs
Ve —Ji(x){ =0 if z=c3 (4.256)
<0 if s<ax<xl

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.92) implies that

VT — . (z) = —x/r =32 +2/r +2— /223 -z + 2) (4.257)

2—x

With the aid of Property I, Eq. (4.256) is a result of Eq. (4.257) and the following relations:
(i) Eq. (4.240); (ii)

—zvr =3z +2Vz+2=(1-Vz)(z+4y/x+2) >0 (4.258)
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(iii)

(~eve - 30+ 2z +2)" - [V2(e® — o+ 2)]

= —2° 4+ 62°/% 4 5% — 162%/% — 62 + 8/x (4.259)
7+/33 7-/33
- v - (e + ) (vi- ) (Ve - TR

(iv) 0 < (7= V33)/2 < 1< (74 V/33)/2; and (v) c5 = [(7 - \/ﬁ)/Q]z. QED.

Theorem 42. We have

K (x) <z, 0<z<l1 (4.260)

Proof. Let 0 < z < 1 throughout the proof. Then Eq. (4.114) implies that

20/xr —x +1—+/1—2x+ 522
Vi K, (z) = 22V - (4.261)

With the aid of Property I, Eq. (4.260) is a result of Eq. (4.261) and the following relations:
(i) Eq. (4.241); (ii)
22V —x+1=2zy/x+(1—2) >0 (4.262)

and (i)
(2avE —a+1)" - (WY — dzyT(1— 1) (1 - T) >0 (4.263)
QED.
Theorem 43. Let ¢4 be the constant defined in Eq. (4.158). Then
>0 if O<z<cy
Ve—L ()3 =0 if x=¢, (4.264)

<0 if gq<ax<l

Proof. Unless specified otherwise. Let 0 < x < 1 in this proof. Then Eq. (4.122)
implies that
2\/22—-z—2%)— (44— —x\/x)
x

Vi —L_(z) = (4.265)
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To proceed, note that

[2 22—z — x2)]2 G xﬂ)2 = —zv/z g(x) (4.266)

where et
g(x) = zvx + 22+ 9vx — 8, x>0 (4.267)

Because (i)
g (z) =3vz/2+2+9/(2yx) = 3/(2Vz) [(Vz +2/3)* +23/9] >0, x>0 (4.268)

and (ii)
g(0)=—-8 and g(1)=4 (4.269)

one concludes that g(x) is strictly monotonically increasing in the interval 0 < x < 1 and
there is one and only one real root of g(x) = 0 in this interval. By using the standard
formula for the roots of a cubic equation, it can be shown that this root is given by = = ¢4.
Moreover, Eqgs. (4.268) and (4.269) imply that: (i) g(z) < 0if 0 < & < ¢q; (i) g(x) = 0 if
